
 1 

Ion Diffusion in the Presence of Electric Field 
Membrane Potentials 

There can exist potential differences between different parts of living cells and the 
environment. Some of these potentials are shown schematically in Fig. 1. 
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Fig. 1. Some electric potentials inside a 
living cell. 
ϕ0 - extracellular potential; 
ϕi - intracellular potential; 
ϕmx - potential inside the matrix of 
mitochondria. 

 
There are potential differences between water phases separated by membranes; these 

differences are called transmembrane or merely membrane potentials. A cell membrane potential 
can be determed as a difference of potentials between intracellular contents ϕi and the environment 
ϕ0. A mitochondrial potential is a difference of potentials between the matrix of mitochondria and 
intracellular medium. Thus, 

ϕ ϕ ϕ ϕ ϕ ϕm i o mx x i= − = −;  (1) 

where ϕm - cell membrane potential, and ϕmx - membrane potential of mitochondria. 
Besides the transmembrane potential difference, there can exist a difference of electric 

potentials between membrane�s lipid phase and washing  aqueous solution, the so-called interphase 
potential. If there are charged chemical groups on membrane�s surface (phosphoric acid residues, 
for instance), a difference of potentials arises between the membrane�s surface and the environment, 
the so-called surface potential. Interphase and surface potentials will be considered in detail below, 
and now we are going to consider in what way the existence on membrane of transmembrane 
potential will influence ion transfer. 

Fig. 2 shows schematically the profile of electric potential in a homogeneous lipid membrane 
surrounded by salt solutions. Due to high conductivity of saline solutions, the total difference of 
potentials in the system drops on the membrane�s lipid layer which is a very good electric isolator. 
Inside the membrane (if it is homogeneous by its properties), the electric potential drops linearly, as 

it is presented in Fig. 2. This means that the value xE
dx
d −=ϕ

 
is constant inside the membrane. 

(This problem will be considered more thoroughly in the next section). The energy of ion, in the 
process of its motion across the membrane, changes by (according to) the same linear law.  
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Fig. 2. Profile of potential in homogeneous 
membrane. 
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This reasoning, however, is based on the approach that membrane is a completely 

homogeneous body; but the lipid part of the membrane consists of two layers of phospholipid 
molecules, and the sizes of mobile links of fatty acid chains in these molecules are commensurable 
with the sizes of the ions travelling inside the membrane. This fact makes one reject a completely 
macroscopic approach to the phenomena while considering ion transfer in membrane and consider 
the process on the microscopic (i.e. molecular) level. 

 

Changes of potential barrier sizes for ion motion in the presence of external electric field 
In the absence of electric field in a homogeneous membrane, the hight of barriers and the depth 

of pits are everywhere the same. This is why the probability of accidental jumping of ion from left 
to right is equal to the probability of its jumping from right to left (see Sections 3 and 4); but this 
pattern alters if electric field is applied to the membrane (see Fig. 3). 

It is known from electrostatics that the existence of the field Ex directed along the X-axis 
means that the potential along this axis changes: 

x
Ex ∂

∂ϕ−=  (2) 

This, in its turn, means that the ion�s energy changes depending on the coordinate of the pit or 
barrier where the ion is (present) at a given moment. If the potential at some site is equal, , then this 
adds to the ion energy a summand equal to ze, where ze is ion�s electric charge, and e - elementary 
charge, i.e. proton�s charge. The value z is the ion�s dimensionless (nondimensional) charge. 
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Fig. 3. Changes in the energetic profile of the 
membrane in the presence of electric field. 
In the presence of the field the energy of cations 
grows with the growth of potential (scheme 
below). 
Vice versa, the energy of anions decreases with the 
growth of potential (not shown in the figure). 

 
The additional energy conveyed to the ion in the presence of external electric field alters the 

membrane�s energetic profile, as it is shown in Figs. 3 and 4. For positive ions (cations), the level of 
all barriers and pits grows in the direction of the potential�s growth. 

 

zeϕ

X

E

λ

1

2
zeϕ

Fig. 4. Changes in the ion energy profile in 
membrane in the absence (1) and in the presence 
(2) of electric field. 
Potential differences between every pit and 
neighbouring barriers are ?. 
For details see the text. 
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Designate as   ??   the difference of potentials between a pit and a neighbouring left barrier. If 
the pits and barriers across all the membrane are similar and symmetrical the difference of 
potentials between each barrier and the neighbouring left pit will also be equal. 
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Fig. 5. Ion flux (flows) through barrier. 
n1 - ion concentration to the left of plane S in 
volume S; n2 - the same to the right of plane S. 
The ion flow from left to right is proportional to n1 
and depends on the hight of the barrier to the right 
(activation energy is E + ze). The ion flow from 
right to left is proportional to n2 and depends on 
the hight of the barrier to the left of the pit 
(activation energy is E � ze). 

 
Assume that the ion energy in the potential pit was initially equal to E, and the potentiala was 

equal to 0. In the presence of In the presence of a potential in a neighbouring pit, the ion�s energy in 
it will be higher by ze, where e is elementary charge ,i.e. proton�s charge, and z - dimensionless 
ion�s charge (for K+ or Na+, z = 1; for Cl� z = �1; for Ca2+ z = 2, etc.). It means that if an electric 
field is applied to a membrane, such that the created potential difference between two pits is equal 
to 2, then the frequency of ion jumps from the pit to the left increases (for positive ions) and 
becomes equal to      (3), 

kT
zeE

oe
ϕ−−

ν=ν , (3) 

and the frequency of jumps of (positive) ion to the right decreases and becomes equal to: 

kT
zeE

o e
ϕ

νν
+−

=  (4) 

 
(See Fig. 5). If even the quantity of ions in all the pits is the same (i.e. the summary diffusional 

flow of the particles is equal to 0), the prevailing motion of cations (flow of ions) from right to left 
will take place in the membrane due to the different probability of jumping of each ion to the left 
and right. 

The motion of ions in magnetic field is termed as electrophoresis (see Fig. 6, centre). 
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Fig. 6. Membrane’s energetic profiles (to the 
left), and changes in potential through the 
membrane’s thickness and in ion concentration 
C. 
Above - the absence of the gradients of 
concentration and potential on the membrane; 
below- the presence of the gradients of 
concentration and potential. 
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In a more case, the motion of ions by the laws diffusion (to the direction of a lower 
concentration) and due to electrophoresis are combined; thus, one can spear about the electric 
diffusion of ions (see Fig. 6, below). 

To consider flows during electric diffusion, it is necessary to draw plane S through the 
membrane in such a way that it would pass across the middle between two neighbouring energetic 
pits. A flow of ions from left to right will be equal to the quantity of ions (N1) in a volume S to the 
left of plane S multiplied by the frequency of jumps to the right (ν0/2) and multiplied by the 
probability of a "successful" jump: (5) 

kT
eE

o
n eN

ϕ+−

→

ν=Φ
21   (5) 

In a similar way, the flow of ions to the left will be the following: 

kT
zeE

o
n eN

ϕ−−

←

ν=Φ
22 ,  (6) 

where N2 - the number of ions in a volume S to the right of plane S. 
The number of ions (N) in each case is equal to the product of ion concentration (n 

particles/m3) and into the volume S i.e. N = nS). 
The summary flow to the X-axis direction can be expressed by the following formula: 

)(
2 21 kT

zeE
kT
zeE

o
n enenS

ϕϕ
ν

λ
−−+−

−=Φ , (7) 

and the flow density 

)(
2 21 kT

zeE
kT
zeE

o
n enenJ

ϕϕ
ν

λ
+−−−

−= . (8) 

To simplify this or many following equations the dimensionless potential value should be 
introduced: 

ψ ϕ=
e

kT  (9) 

Besides, The value kT
E

e
−

 is taken out of the brackets. To simplify records, the dimensionless 
energy value should be used: 

kT
EW =  (10) 

Now Eq. 8 can be recorded as follows (acquires the following form): 

)(
2 21

ψψν
λ zzWo eneneJ +−− −= . (11) 

One-barrier model of ion transport 
Local ion concentrations in membrane�s microareas (n1 and n2) as well as local potential 

changes can not be determined experimentally, this is why Eq. 11 can be of little use. The purpose 
of its further transformations is to obtain, in the right part of the equation, real experimental values 
of transmembrane potential and ion concentrations in water phase. Such transformations in 
theoretical biophysics are carried out with the use of these or those assumptions of the internal 
structure of membranes. Below, two extreme cases are considered: 
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1) There is one barrier for ions in the center of the membrane (the unibarrier model of ion 
transport). 
2) The number of barriers in the membrane is very large, and they all are equal in sizer in the 
absence of field (the multibarrier model). 

 
One-barrier model 

The ions in the well to the membrane�s left are in the lipid phase and they are distributed 
between this phase and the neighboring water phase. So, ion concentrations in the «wells» (Cm1 = n1 
and Cm2 = n2) can be expressed through their concentrations in the water phase (C1 and C2) using 
the distribution coefficient:(13). 

2

2

1

1
C

C
C

C
K mm == , (12) 

)(
2 21

ψ+ψ−− −νλ= zzWo eCeCKeJ . (13) 

Substituting the expression Wo e−
2

2νλ
 for the diffusion coefficient D (compare Eq. 6 in 

Section 4), we obtain the following expression: 

)( 21
ψψ

λ
zz eCeCDKJ +− −= . (14) 

In our case, the value λ (ion displacement along the X-axis at every jump) is equal to the 
membrane�s thickness (l). This allows to substitute DK/λ in Eq. 14 for the permeability coefficient 
P = DK/λ. The final equation of the flow under the unibarrier model of ion transfer looks like that: 

)( 21
ψ+ψ− −= zz eCeCPJ  (15) 

Under the unibarrier model of membrane transport, the transmembrane potential ψm is equal to 
the potential difference between two neighbouring «wells»; thus, ψ = (ψm/2) in Eq. 15 where ψm is 
transmembrane potential in the dimensionless form. 

 

Electric diffusion of ion in homogeneous medium 
Below, the multi-barrier model of ion transport will be considered. Come back to Eq. 11. 
If one proceeds from ion transfer inside the membrane by the kinks mechanism, the simplest 

assumption is that the membrane is homogeneous and the ion when moving overcomes many 
identical wells separated by barriers of the same height. The potential difference between 
neighboring wells is not large, and this allows to substitute e – z and e+ z by the approximate values 
1 – z and 1 + z: 

e – z ≈ 1 – z ; e+ z ≈ 1 + z (16) 

Thus, Eq. 11 can be recorded as follows: (17). 

)(
2 2211 ψψ

ν
λ zCCzCCeJ mmmm

Wo −−−= − . (17) 

After some rearrangement, the following equation is obtained: 

)]([
2 2121 mmmm

Wo CCzCCeJ +−−= − ψ
ν

λ . (18) 

At small values, it can be considered that    (19). 
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dx
dCCC mmm =

−
λ

12  (19) 

In the same way, the potential difference between neighbouring barriers (as well as between 
neighbouring wells) the distance between which is λ, is related with the gradient of potential along 
the X-axis by an obvious relation (ratio): 

dx
dψ=

λ
ψ2  (20) 

Moreover, it is useful to introduce the concept of mean ion concentration in the region of a 
given well: (21). 

2
21 mm

m
CC

C
+

=  (21) 

Substituting these values into Eq. 18, the following equation is obtained: (22). 






 ψ+

ν
λ−= −

dx
dzC

dx
dCeJ m

mWo
2

2
. (22) 

After that we substitute into Eq. 22 the diffusion coefficient (see Eq. 6 in Section 4): 






 ψ+−=

dx
dzC

dx
dC

DJ m
m

. (23) 

Thus, we have deduced a very important equation which is called «the basic equation of 
electrodiffusion». 

It should be stressed that inspite of the fact that the electrodiffusion equation was derived for a 
concrete case - the case of ion motion in the lipid phase of membranes, it can be applied to any 
homogeneous medium including water solutions. That is why it is often written without the 
concentration index (i.e. C instead of Cm). 

Diffusion and electrophoresis 
It is very interesting to analyze Eq. 23 for two particular cases. 
Case 1. Particles are not charged (neutral molecules), or there is no electric field across the 

membrane (transmembrane potential difference is absent). In this case z = 0, or 
dx
dψ

 
= 0, or both 

these values are equal to 0. In all the variants, the second summand (component) in brackets are 
equal to 0; thus, we obtain the already known Fick�s law for molecule diffusion in homogeneous 
medium: 

dx
dCDJ −= . (24) 

Case 2. There is no ion concentration gradient inside the membrane (it usually means that ion 
concentrations in water phase are equal on both membrane sides. In this case the first summand in 
brackets in Eq. 26 is equal to 0, and the ion flow can be expressed by the following formula: 

xzeE
kT
DC

dx
d

kT
eDzC

dx
dDzCJ =ϕ−=ϕ−= ,. (25) 

where Ex - electric field intensity in the X direction. The product of the field and charge is equal to a 
force F acting on the particle, i.e. F=zeEx. Thus, there exists a direct proportionality between the 
electric force acting on every particle and the density of the flow of particles moving under the 
action of this force: 

CuFJ = , (26) 
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where the proportionality coefficient u=(D/kT) is called the ion electrophoretic mobility. It is not 
difficult to see that the ion mobility is proportional to the diffusion coefficient. 

 

Electrodiffusion as the sum of diffusion and electrophoresis 
The introduction of electrophoretic mobility allows to make easier the expressions in the 

electrophoresis equation (25): 

dx
dzeCuJ ϕ−= , (27) 

and to change the form of writing of the basic electrodiffusion equation (23 

dx
dzeCu

dx
dCDJ ϕ−−= . (28) 

This equation is known as the Nernst-Plank equation. The comparison of this equation with 
Fick�s equation for diffusion (24) and electrophoresis equation (27) shows that the summary flow in 
the case of electrodiffusion is added algebraically of diffusion and electrophoretic flows; in other 
words, diffusional and electrophoretic ion motions occur irrespective of each other. 

 

Ion motion rate in electric field 
The relationship between the flow density of ions moving under the action of electric field, and 

the motion rate of each particle is very simple. See Fig. 7. 
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Fig. 7. Relationship between flow density (J) 
and the rate of motion of each particle (v). 
Since vSC kilomoles of particles (C - molar 
concentration) pass through square S every second, 
the flow = vSC, and the flow density J = vC. 

 
Assume that ions move through a plane S in the X direction under the action of electric field. 

Every second each ion passes a distance 1v, m, where v - ion transfer rate, m/sec. Laying off this 
distance to the left of plane S, we obtain a volume 1vS which contains 1vSn particles, or 1vSC 
kilomoles of substance. This amount of substance is carried for one second through plane S. Thus, 
the flow 

vSC=Φ , (29) 

and the flow density is equal to the product of the transfer rate of particles and their molar 
concentration: 

vCJ = , (30) 

 

Relationship between ion flow and electric current in medium 
Since each ion carries a charge equal to ze, a simple relationship exists between the particle 

flow density (J) (c-1⋅m-2) and the density of electric current (j), А⋅м-2: 
zeJj = , (31) 

If ion concentration in the medium is uniform (i.e. the concentration gradient is equal to 0), the 
equation for current density may be derived from Eqs. 27 and 31: 
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dx
dCuezj ϕ22−= , (32) 

This equation can be compared to the well-known Ohm�s law for continuous media: 

dx
dj ϕσ−= , (33) 

where s, Ohm-1 - medium conductivity. Thus, the used above theory of random walks with 
regard for changes in the energetic profile in electric field not only allows to deduce 
Ohm�s law but exposes the matter of conductivity if it is conditioned by the transfer of 
one ion: 

Cuez 22−=σ , (34) 

If a medium (whether it is membrane lipid layer or water solutions) contains several ions, the 
total electroconductivity is the sum of conductivities of all ions: 

∑=σ
i

iii uCze 22 , (35) 

 

Questions 
1) Membrane potentials. 
2) Alterations of potential barriers for ion motion in the presence of external electric field. 
3) Unibarrier model of ion transport. 
4) Electric diffusion of ion in homogeneous medium. 
5) Diffusion and electrophoresis. 
6) Relationship between ion flow and electric current in medium. 


