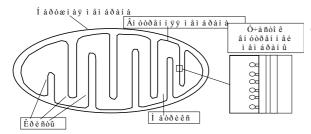
Ю. А. Владимиров

Физико-химические основы патологии клетки

Лекция 2


Биоэнергетические функции митохондрий

Москва, МГУ, РГМУ, 1998г

Нарушение функций митохондрий при тканевой гипоксии

Нарушение биоэнергетических функций митохондрий — одно из наиболее ранних проявлений повреждения клеток.

Биоэнергетические функции митохондрий

Митохондрии - это везикулярные структуры, образуемые наружной и внутренней мембранами. Внутренняя мембрана образует складки, или кристы, окружающие матрикс. На складках внутренней мембраны видны грибовидные выросты — это Н⁺-АТФаза, или АТФ-синтаза, о которой будет сказано позже.

Рис. 1. Схема строения митохондрии.

Внутренняя мембрана митохондрий непроницаема для большинства ионов, включая ионы водорода, натрия, калия, хлора. Но она, как и другие биологические мембраны проницаема для воды; поэтому объем митохондрий зависит от концентрации ионов внутри и снаружи. В норме концентрации частиц по обе стороны митохондриальной мембраны равны, при патологии концентрация внутри обычно повышается и митохондрии "набухают", к чему мы ещё вернемся.

Окислительное фосфорилирование

Митохондрии осуществляют важнейшую для клеточной биоэнергетики реакцию фосфорилирования АДФ с образованием АТФ за счет энергии окисления органических соединений, служащих субстратами окисления, молекулярным кислородом. Конечная стадия этого процесса — перенос электронов от восстановленных пиридиннуклеотидов и сукцината на молекулярный кислород осуществляется по системе переносчиков электрона, которая в совокупности называется дыхательной цепью. На рис. 2 схематически изображена дыхательная цепь.

Дыхательные комплексы

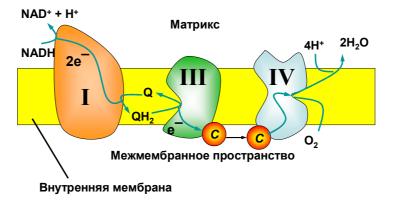
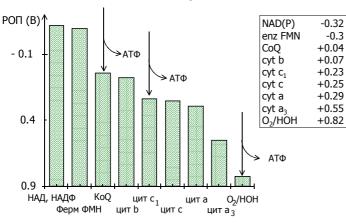



Рисунок 2. Дыхательная цепь митохондрий (схема).

Римскими цифрами обозначены дыхательные комплексы, на которые мембраны митохондрий впервые разделил Дэвид Грин. Строчными буквами обозначены цитохромы, остальные сокращения общеприняты в биохимии.

При переносе электронов по дыхательной цепи происходит высвобождение энергии, величина которой (в электрон-вольтах) равна разности стандартных восстановительных потенциалов двух реагирующих ред-окс пар. Эти стандартные потенциалы приведены на рис. 3.

Окислительно-восстановительные потенциалы переносчиков

На участках с большим перепадом энергии осуществляется синтез АТФ (показано стрелками). Эти участки называются **точками сопряжения**.

Английский биохимик Петер Митчелл сначала предположил, а потом показал, что одновременно с переносом электронов по дыхательной цепи митохондрий в определенных ее звеньях, называемых **точками** сопряжения, происходит перенос протонов из матрикса в окружающую среду. При этом энергия окислительновосстановительной реакции ΔE превращается в энергию перенесенных протонов.

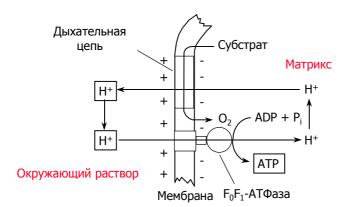
Рисунок3. Восстановительные потенциалы переносчиков электронов в дыхательной цепи митохондрий

Энергия одного моля иона в данной среде называется, как известно, электрохимическим потенциалом. Разность электрохимических потенциалов протона между двумя водными фазами внутри и вне митохондрий описывается уравнением:

$$\Delta E = \Delta \mu_{H^+} = RT \ln \frac{[H^+]_o}{[H^+]_i} + F\Delta \varphi , \qquad (1)$$

Где R – газовая постоянная, T – абсолютная температура, $[H^+]_{\rm o}$ и $[H^+]_{\rm i}$ – концентрации ионов водорода вне и внутри матрикса, соответственно, F – число Фарадея, $\Delta \phi$ - разность потенциалов между окружающей средой и матриксом.

Петер Митчелл в качестве единицы энергии использовал электрон-вольты, в результате чего уравнение (1) несколько трансформируется:


$$PMF = \frac{\Delta \mu_{H^+}}{F} = \frac{RT}{F} \ln \frac{[H^+]_o}{[H^+]_i} + \Delta \varphi$$
 (1)

Суммарная энергия окислительно-восстановительной реакции, превращенная в разность электрохимических потенциалов ионов водорода, была названа П. Митчеллом **протон-движущей силой** (PMF - proton motive force), по аналогии с электродвижущей силой в гальванической батарее. Заменив натуральный логарифм десятичным, легко найти величину протон-движущей силы, зная разность рН (Δp H) и разность потенциалов ($\Delta \phi$) между средой и матриксом при комнатной температуре; выраженная в милливольтах она будет равна:

$$PMF (MB) = 60 (MB) \cdot \Delta pH + \Delta \varphi(2)$$

В митохондриях основной вклад в эту сумму вносит мембранный потенциал, который в присутствии субстрата и кислорода составляет около 170-180 мВ.

Созданная работой дыхательной цепи разность потенциалов $\Delta\mu_{\rm H}^{+}$ может быть использована для синтеза АТФ или переноса ионов в митохондрии. Синтез АТФ осуществляется благодаря работе АТФ-синтазы, которая представляет собой протонную АТФазу (${\rm H}^{+}$ -АТФазу), работающую как бы "задним ходом" (см. схему на рис. 4).

При переносе электронов по дыхательной цепи (рис. 2) в каждой точке сопряжения происходит перенос протонов через мембрану (один электрон – один протон) из матрикса наружу. Соэдаваемая разность элетрохимических потенциалов протона ($\Delta \mu_H^{+}$) служит движущей силой для работы АТФ-синтазы (F_0F_1 -АТФаза). Электродиффузионный перенос протонов из окружающей среды в матрикс "проворачивает колесо фермента" и происходит синтез АТФ.

Рис. 4. Схема окислительного фосфорилирования, согласно хемоосмотической теории Митчелла.

Рисунок взят из учебника Ленинждера (т.2, стр 531, 1985).

Перенос ионов через мембрану митохондрий

Альтернативный путь использования накопленной в форме $\Delta \mu_{H}^{^{+}}$ энергии – транспорт ионов внутрь митохондрий.

электронов. **Энергизация** митохондрии

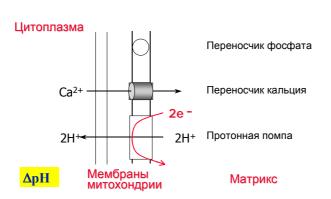
Цитоплазма

Переносчик фосфата

Переносчик кальция

2e 2H+ Протонная помпа

Мембраны митохондрии

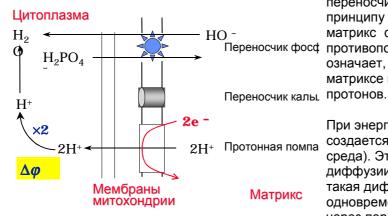

Матрикс

Работа протонной помпы при переносе

При наличии субстратов и кислорода до дыхательной цепи митохондрий происходит перенос электронов, который в точках сопряжения сопровождается переносом протонов через мембрану: из матрикса в окружающее пространство. Это приводит к появлению на мембране разности электрохимических потенциалов ионов водорода $\Delta\mu_{\rm H}^{}$, которая, выраженная в милливольтах, состоит из $60\Delta{\rm pH}$ + $\Delta\varphi$. (см. уравнение 2).

Рис. 5. Энергизация митохондрий в присутствии субстратов дыхания и кислорода

Поскольку внутри митохондрий при энергизации появляется **отрицательный** потенциал, катионы засасываются электрическим полем в матрикс, если мембрана для них проницаема. Во внутренней мембране имеется переносчик ионов кальция. Движение кальция снимает мембранный потенциал ($\Delta \varphi$ в уравнении 2), что приводит к довольно резкому возрастанию ΔpH , т.е. защелачиванию матрикса (см. <u>puc. 6</u>).


Перенос Ca²⁺ в матрикс митохондрий

При энергизации митохондрии на мембране создается разность $\Delta \varphi$ (внутри — минус). В мембране митохондрий имеется переносчик ионов кальция, через который они могут проходить вместе со своим зарядом под действием электрического поля (электрофоретически). Как видно из уравнения 2, при этом на мембране снижается $\Delta \varphi$ и возрастает Δp H.

Рис. 6. Перенос кальция в митохондрии. Объяснение в тексте.

С другой стороны, между матриксом и окружающей средой в энергизованной митохондрии имеется разность pH (более щелочная среда внутри). Это приводит к диффузии внутрь митохондрий ортофосфата, для которого в мембране имеется переносчик, работающий по механизму **антипорта**: ион HPO_3^- обменивается на гидроксил OH^- (рис. 7). В водном растворе это эквивалентно **симпорту** (совместному переносу) H^+ и HPO_3^- .

Перенос фосфата в матрикс митохондрий

Заметьте, что перенос пары протонов требут переноса двух ионов H_2PO_4 .

Митохондрий В мембране митохондрий имеется переносчик фосфата, который работает по принципу **ионообмена**: перенос H₂PO₄⁻ в матрикс сопровождается переносом HO⁻ - в противоположную сторону (антипорт). Это означает, что при переносе фосфата в матриксе повышается концентрация

При энергизации митохондрии на мембране создается разность pH (внутри - щелочная среда). Это становится движущей силой для диффузии гидроксильных ионов наружу, но такая диффузия возможна только одновременно с переносом внутрь $H_2PO_4^-$ через переносчик фосфата. Поэтому при переносе фосфата на мембране снижается ΔpH и возрастает $\Delta \phi$.

Рис. 7. Перенос фосфата в матрикс энергизованной митохондрии.

При таком переносе не происходит переноса заряда через мембрану, и поэтому перенос не зависит от мембранного потенциала. Однако разность концентрации H+ способствует переносу фосфата в матрикс по закону диффузии для ионов гидроксила, которых в матриксе больше, чем снаружи.

Таким образом, ионы кальция накапливаются в матриксе электрофоретически, при этом мембранный потенциал снимается, а разность рН на мембране возрастает. Фосфат переносится в матрикс в конечном счете в электронейтральной форме, при этом снижается разность рН, а мембранный потенциал растет. Если в среде присутствуют одновременно и ионы кальция и ортофосфат, происходит накопление обоих в матриксе, при этом снимается как мембранный потенциал, так и Δ рН. Ничто более не препятствует свободному прохождению ионов водорода через мембрану в точках сопряжения, и дыхательная цепь работает на полную мощность.

Из теории Митчелла следует, что прекращение синтеза АТФ митохондриями (или подавление транспорта кальция и фосфата в матрикс) может произойти не только в результате повреждения дыхательной цепи (и снижения скорости дыхания, т. е. окисления субстратов кислородом), но и в случае нарушения барьерных свойств внутренней мембраны. В последнем случае происходит утечка ионов через поврежденную мембрану и падение разности потенциалов на мембране, необходимой для работы АТФ-синтазы, транспорта фосфата и ионов кальпия.

Функциональные состояния митохондрий по Б. Чансу

Изучение функций митохондрий и их нарушения производится после выделения этих органелл из ткани; при этом важно не повредить митохондрии в ходе самого выделения.

Один из способов изучения функции митохондрий – измерение скорости потребления кислорода суспензией органелл в различных функциональных состояниях методом полярографии. На рис. 7 приведена схематизированная запись изменения концентрации кислорода в суспензии в ходе инкубации изолированных митохондрий.

Суспензия митохондрий в изотоническом растворе КСІ содержала ортофосфат и АДФ, а также растворенный в среде кислород, но не содержала субстратов дыхания (**состояние 2**, деэнергизованные митохондрии). При добавлении сукцината митохондрии энергично потребляют кислород и происходит синтез АТФ (**состояние 3**, окислительное фосфорилирование). Если АДФ было немного, оно быстро расходуется, фосфорилирование прекращается и скорость дыхания резко снижается (**состояние 4**, дыхательный контроль, митохондрии энергизованы, на мембране поддерживается высокая разность потенциалов). Когда в среде кончается кислород, митохондрии перестают дышать и деэнергизуются (состояние 5). Тангенс угла наклона участков этой ломаной линии представляет собой скорость потребления кислорода в различных состояниях (V_2 - V_5). См. также рис. 9.

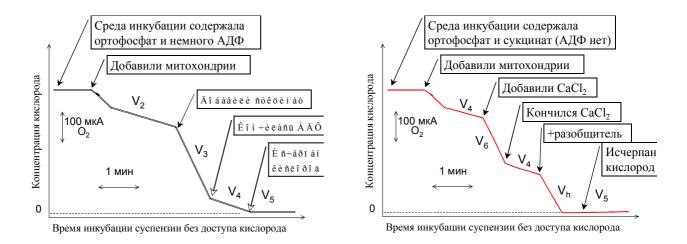


Рис. 8. Потребление кислорода митохондриями в разных состояниях по Б. Чансу.

Наклон кривой в каждый момент времени характеризует скорость потребления кислорода (дыхания) в данном состоянии, эти величины принято обозначать как V_I , V_2 , V_3 , V_4 и т.д., где цифрами обозначены состояния по классификации Б. Чанса. Наиболее информативны V_3 — скорость дыхания митохондрий при **окислительном фосфорилировании**, т. е. в присутствии субстратов окисления, АДФ и ортофосфата, и V_4 — скорость дыхания митохондрий в присутствии субстратов окисления и ортофосфата, но в отсутствие АДФ (состояние **дыхательного контроля**).

На рисунке 9 показано, что именно происходит в митохондриях в этих состояниях.

Функциональные состояния митохондрий по Чансу

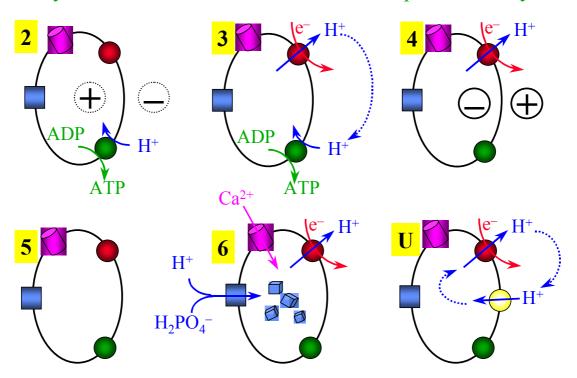


Рис. 9. Функциональные состояния митохондрий по Б. Чансу.

2 - 6 - основные функциональные состяния, U - разобщенное состояние митохондрий. Остальные объяснения даны в тексте.

Рассмотрим вопрос подробнее.

1 - Это состояние митохондрий, к которым не добавлены ни субстраты, ни АДФ (- SH₂, - АДФ). Состояние неопределенное, т.к. сколько-то эндогенных субстратов и АДФ есть в самих митохондриях.

2 - К митохондриям добавили АДФ, но не добавили субстраты окисления(- \mathbf{SH}_2 , + \mathbf{A} ДФ). Это деэнергизованное состояние, т. к. в отсутствие субстратов дыхательная цепь не работает и митохондрии не поддерживают мембранный потенциал. 3 - состояние окислительного фосфорилирования (+ \mathbf{SH}_2 , + \mathbf{A} ДФ). Окисление субстратов приводит к энергизации митохондрий, мембранный потенциал тянет протоны внутрь через АТФ-синтазу и происходи синтез АТФ из добавленного АДФ. 4 - состояние дыхательного контроля (+ \mathbf{SH}_2 , - \mathbf{A} ДФ): митохондрии энергизованы, но дыхание подавлено, поскольку в отсутствие АДФ высокий мембранный потенциал останавливает перенос протонов через мембрану и следовательно – перенос электронов по дыхательной цепи. 5 – состояние анаэробиоза (в среде кончился кислород). Митохондрии деэнергизованы и, разумеется, не фосфорилируют независимо от того, есть в среде субстраты и АДФ или нет. 6 - состояние ионного транспорта. При добавлении субстратов и ионов кальция последние втягиваются внутрь электрическим полем, снижая мембранный потенциал. Одновременно внутрь начинает закачиваться ортофосфат, под действием Δ рН. В итоге внутри накапливается фосфат кальция, а $\Delta\mu_{\rm H}^+$ снимается, и дыхательная цепь работает с максимальновозможной скоростью. U — к митохондриям добавлен переносчик протонов через мембраны (например, 2,4-динитрофенол). В результате движения протонов внутрь снимается $\Delta\mu_{\rm H}^+$ и дыхательная цепь работает вовсю.

Вопросы для самоконтроля и зачета

- 1. Обшая схема строения митохондрий. Дыхательная цепь. Восстановительные потенциалы переносчиков. Точки сопряжения.
- 2. Схема окислительного фосфорилирования по Митчеллу.
- 3. Перенос ионов кальция и фосфата в митохондрии.
- 4. Функциональные состояния митохондрий. Условия, скорость дыхания и мембранный потенциал в каждом из состояний.
- 5. К каким изменениям в скорости дыхания приведут повреждения дыхательной цепи и нарушение барьерных свойств мембран?