Государственный комитет Российской
Федерации
по высшему образованию
Нижегородский государственный университет
им. Н.И. Лобачевского
УЧЕБНАЯ ПРОГРАММА
по общему курсу
ОСНОВЫ ВЕКТОРНОГО И ТЕНЗОРНОГО АНАЛИЗА
для направления подготовки
"физика"
и по специальности
"радиофизика и электроника"
Курс: 2
Семестр: 3
Лекции: 54 час.
Практикум: 36 час.
Экзамен: 3 семестр
Программа составлена
Н.Новгород 1995
ЦЕЛИ И ЗАДАЧИ КУРСА
ОСНОВЫ ВЕКТОРНОГО И ТЕНЗОРНОГО АНАЛИЗА
1. Учебные цели курса.
Курс "Основы векторного и тензорного анализа" предполагает знакомство студентов радиофизического факультета с математическим и обьектами, составляющими необходимую и важную часть языка теоретической физики, классической и квантовой механики, теории электромагнитного поля и др. Этот раздел блока "Высшая математика" наиболее богат физическими приложениями, связанными в частности с практическим применением формул Стокса и Остроградского, дифференциальных операторов в ортогональных криволинейных координатах. В разделе "Элементы дифференциальной геометрии" закладываются знания, необходимые для курса "Классическая механика".
2. Учебные задачи курса.
Научить студентов свободно владеть дифференциальными операциями теории поля, необходимыми при дальнейшем изучении теоретических курсов физики. Ознакомить студентов с глобальными понятиями теории поля: поток, циркуляция и т.д. Научить вычислять эти величины, используя поверхностные и криволинейные интегралы, некоторые понятия дифференциальной геометрии. Введя понятие тензора, подготовить студентов к дальнейшему изучению тензорных полей.
3. Дисциплины, изучение которых необходимо для изучения курса.
Для изучения курса "Основы векторного и тензорного анализа" нужно знать следующие разделы курса "Математический анализ": диференциальное и интегральное исчисление функций одной и многих переменных, а также курсы "Аналитическая геометрия и высшая алгебра" и "Дифференциальные уравнения".
СОДЕРЖАНИЕ КУРСА
"ОСНОВЫ ВЕКТОРНОГО И ТЕНЗОРНОГО АНАЛИЗА"
(наименование тем и их содержание)
1. Векторные функции. 4 часа.
1.1. Предел и непрерывность векторной функции.
1.1.1. Понятие векторной функции одной и нескольких переменных.
1.1.2. Предел векторной функции. Свойства пределов векторных функций.
1.1.3. Непрерывность векторной функции.
1.2. Дифференцируемые функции.
1.2.1. Дифференцирование векторной функции одной переменной.
1.2.2. Геометрический смысл производной векторной функции.
1.2.3. Дифференцирование векторной функции многих переменных.
1.2.4. Дифференциал векторной функции многих переменных.
1.2.5. Производные по направлению от скалярной и векторной функции.
1.2.6. Вычисление производной по направлению.
1.2.7. Формула Тейлора для векторной функции.
1.3. Интегрирование векторных функций.
1.3.1. Определения интегралов от векторных функций.
1.3.2. Свойства интегралов от векторных функций.
1.3.3. Интегральная теорема о среднем.
2. Элементы дифференциальной геометрии. 12 часов.
2.1. Пространственные кривые.
2.1.1. Основной трехгранник кривой.
2.1.2. Формулы Френе.
2.1.3. Вычисление кривизны и кручения.
2.1.4. Система координат, связанная с основным трехгранником.
2.1.5. Уравнения касательной, главной нормали, бинормали, нормальной плоскости.
2.1.6. Ориентированная кривизна плоской кривой.
2.2. Дифференциальная геометрия на поверхности.
2.2.1. Понятие поверхности. Параметризация поверхности. Простая поверхность. Гладкая поверхность.
2.2.2. Нормаль и касательная плоскость к поверхности.
2.2.3. Системы координат в касательных плоскостях.
2.2.4. Измерение на кривой поверхности длин, углов и площадей.
2.2.5. Первая квадратичная форма поверхности. Кривизна линии на поверхности.
2.2.6. Вторая квадратичная форма поверхности.
3. Поверхностные интегралы. 8 часов.
3.1. Поверхностный интеграл 1-го типа.
3.1.1. Определение, физический смысл.
3.1.2. Вычисление площади гладкой поверхности.
3.1.3. Вычисление поверхностного интеграла первого типа.
3.2. Поверхностный интеграл 2-го типа.
3.2.1. Односторонние и двухсторонние поверхности.
3.2.2. Определение поверхностного интеграла 2-го типа.
3.2.3. Физический смысл поверхностного интеграла 2-го типа.
3.2.4. Вычисление поверхностного интеграла 2-го типа.
3.2.5. Формула Гаусса-Остроградского.
3.2.6. Формула Стокса.
4. Теория поля. 20 часов.
4.1.Скалярное поле.
4.1.1. Определение скалярного поля Поверхность уровня и ее основные свойства.
4.1.2. Производная по обьему от функции области.
4.1.3. Градиент: инвариантное определение, вычисление в декартовых прямоугольных координатах.
4.1.4. Свойства градиента.
4.2. Векторное поле.
4.2.1. Определение векторного поля. Примеры.
4.2.2. Векторные линии. Задача о нахождении векторной линии.
4.2.3. Векторная трубка.
4.2.4. Поток векторного поля.
4.2.5. Дивергенция: инвариантное определение, физический смысл, вычисление в декартовых прямоугольных координатах.
4.2.6. Инвариантный вид формулы Остроградского.
4.2.7. Ротор: инвариантное определение, физический смысл, вычисление в декартовых прямоугольных координатах.
4.3. Оператор Гамильтона (вектор "набла").
4.3.1. Общая теорема Гаусса-Остроградского, записанная с помощью вектора "набла".
4.3.2. Действия с вектором "набла".
4.3.3. Дифференциальные операторы, порождаемые вектором "набла"
4.4. Специальные виды полей.
4.4.1 Потенциальное поле. Скалярный потенциал и его свойства.
4.4.2. Циркуляция векторного поля. Инвариантный вид формулы Стокса.
4.4.3.Соленоидальное поле. Векторный потенциал и его свойства
4.4.4. Лапласово поле.
4.4.5. Основная теорема векторного анализа.
4.5. Дифференциальные операции второго порядка.
4.6. Дифференциальные операции теории поля в криволинейных координатах.
4.6.1. Основной и взаимный базисы.
4.6.2. Ковариантные и контравариантные координаты.
4.6.3. Криволинейные координаты в пространстве.
4.6.4. Локальный базис и локальный взаимный базис.
4.6.5. Ортогональные криволинейные координаты. Условие ортогональности криволинейных координат.
4.6.6. Элемент длины в ортогональных криволинейных координатах. Коэффициенты Ламе.
4.6.7. Градиент, дивергенция, ротор, оператор Лапласа в ортогональных криволинейных координатах.
5. Тензоры. 12 часов.
5.1. Аффинный ортогональный тензор.
5.1.1. Преобразование ортонормированных базисов.
5.1.2. Определение афинного ортогонального тензора. Примеры.
5.1.3. Алгебраические действия над афиннными ортогональными тензорами.
5.2. Тензоры в афинных координатах.
5.2.1. Тензорная символика. Понятие тензора любого строения.
5.2.2. Тензорная алгебра: сложение, умножение тензоров, свертка, перестановка индексов, симметрирование, альтернация,метрический тензор, подъем и опускание индексов.
5.2.3. Обратный тензорный признак.
5.2.4. Псевдотензоры.
5.2.5. Понятие тензорного поля. Дифференциальные операции тензорного поля.
Основная литература
Дополнительная литература
ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ.
3 СЕМЕСТР (36 часов на 1 группу)
1. Поверхностные интегралы - 14 часов.
1.1. Поверхностные интегралы 1-го типа (4 часа).
1.2. Поверхностные интегралы 2-го типа (4 часа).
1.3. Формула Стокса (2 часа).
1.4. Формула Остроградского (2 часа).
1.5. Контрольная работа по теме (2 часа).
2. Теория поля - 14 часов.
2.1. Основные понятия теории поля (8 часов).
2.2. Действия с вектором "набла" (4 часа).
2.3. Контрольная работа (2 часа).
3. Тензоры - 8 часов.
3.1. Тензоры (4 часа).
3.2. Физические приложения тензоров (4 часа).
ЛИТЕРАТУРА.
ОБЗОР РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ ПО ТЕМАМ КУРСА
"ОСНОВЫ ВЕКТОРНОГО И ТЕНЗОРНОГО АНАЛИЗА"
Тема 1. Векторные функции.
Основные вопросы темы изложены в учебниках [1] основной литературы и [4] дополнительной литературы.
Тема 2. Элементы дифференциальной геометрии.
Основные вопросы темы изложены в учебнике [1] основной литературы.
Тема 3. Поверхностные интегралы.
Основные вопросы темы изложены в учебнике [1] основной литературы.
Тема 4. Теория поля.
Основные вопросы темы изложены в учебниках [1] основной литературы и [3], [4], [6] дополнительной литературы.
Тема 5. Тензоры.
Основные вопросы темы изложены в учебниках [1], [2] основной литературы и [3], [5] дополнительной литературы.
ВОПРОСЫ ДЛЯ КОНТРОЛЯ.
1. Определение векторной функции одного и многих переменных.
2. Определение предела векторной функции по Коши и по Гейне. Свойства пределов векторных функций.
3. Непрерывность векторной функции. Действие с непрерывными функциями.
4. Дифференцируемые функции (4 случая).
5. Дифференцирование векторной функции одной переменной (определение и две теоремы). . Геометрический смысл производной от векторной функции.
7. Определение частной производной векторной функции многих переменных. Теорема о существовании частных производных у дифференцируемой функции.
8. Определение производной по направлению. Теоремы о вычислении производных по направлению.
9. Интегрирование векторных функций.
10. Основной трехгранник кривой.
11. Система координат связанная с основным трехгранником. Координатные линии и координатные плоскости. Уравнение касательной, нормами, бинормали, нормальной плоскости, спрямляемой плоскости и соприкасающейся плоскости.
12. Формулы Френе. Понятие кривизны и кручения кривой.
13. Вычисление величины кривизны и кручения.
14. Вид кривой вблизи произвольной ее точки.
15. Определение поверхности. Способы задания поверхности. Простая поверхность, гладкая поверхность.
16. Нахождение нормали и касательной плоскости к поверхности.
17. Вычисление направляющих косинусов нормали к поверхности.
18. Длина кривой на поверхности. Первая квадратичная форма поверхности.
19. Определение площади гладкой поверхности. Теорема о вычислении площади гладкой поверхности. Следствия.
20. Нормальные сечения поверхности и их кривизна. Вторая квадратичная форма.
21. Определение поверхностного интеграла 1-го типа. Теорема о вычислении.
22. Вывод формулы Остроградского.
23. Вывод формулы Стокса.
24. Односторонние и двусторонние поверхности. Сторона поверхности.
Определение поверхностного интеграла 2-го типа. Теорема о вычислении.
25. Определения: скалярное поле, поверхность уровня (ее свойства), предел функции от области, производная по объему (ее физический смысл).
26. Определение градиента скалярного поля. Теорема о вычислении. Следствие.
27. Свойства градиента.
28. Определение векторного поля. Векторная линия. Задача о нахождении векторной линии. Векторная трубка. Поток векторного поля. Векторный поток.
29. Дивергенция векторного поля. Теорема о вычислении. Инвариантный вид формулы Остроградского. Физический смысл дивергенции и формулы Остроградского.
30. Определение ротора векторного поля. Теорема о вычислении. Следствие.
31. Физический смысл ротора.
32. Оператор Гамильтона. Действия с вектором "набла". Дифференциальные операторы, порожденные вектором "набла".
33. Общая теорема Гаусса-Остроградского.
34. Потенциальное поле. Теорема о вычислении потенциала. Критерий потенциальности поля.
35. Циркуляция векторного поля. Инвариантный вид формулы Стокса.
36. Соленоидальное поле. Критерий соленоидальности поля. Свойства соленоидального поля.
37. Лапласово поле. Основная теорема векторного анализа ( без доказательства ). Дифференциальные операции второго порядка.
38. Основной и взаимный базисы. Ковариантные и контравариантные координаты вектора.
39. Определение криволинейных координат в пространстве. Координатные линии и координатные поверхности. Теорема о нахождении локальных базисов (основного и взаимного).
40. Определение ортогональных криволинейных координат. Критерий ортогональности. Элемент длины. Коэффициенты Ламе.
41. Вывести формулы в ортогональных криволинейных координатах для градиента и оператора Лапласа.
42. Дивергенция в ортогональных криволинейных координатах.
43. Ротор в ортогональных криволинейных координатах.
44. Дифференциальные операции теории поля в сферических координатах
45. Дифференциальные операции теории поля в цилиндрических координатах.
46. Преобразования ортонормированных базисов.
47. Определение аффинного ортогонального тензора. Примеры: вектор, поверхность.
48. Линейный оператор в векторном пространстве как аффинный ортогональный тензор.
49. Тензорная символика.
50. Преобразование косоугольных базисов.
51. Общее определение тензора. Примеры.
52. Метрический тензор.
53. Тензорная алгебра. Сложение. Умножение. Свертка. Перестановка индексов. Симметрирование. Альтернация. Подъем и опускание индексов.